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Abstract There is wide agreement that the accuracy of turbulence models suffer
from their sensitivity with respect to physical input data, the uncertainties of user-
elected parameters, as well as the model inadequacy. However, the application
of Bayesian inference to systematically quantify the uncertainties in parameters,
by means of exploring posterior probability density functions (PPDFs), has been
hindered by the prohibitively daunting computational cost associated with the
large number of model executions, in addition to daunting computation time per
one turbulence simulation. In this effort, we perform in this paper an adaptive
hierarchical sparse grid surrogatemodeling approach to Bayesian inference of large
eddy simulation (LES). First, an adaptive hierarchical sparse grid surrogate for the
output of forward models is constructed using a relatively small number of model
executions. Using such surrogate, the likelihood function can be rapidly evaluated at
any point in the parameter space without simulating the computationally expensive
LES model. This method is essentially similar to those developed in Zhang et al.
(Water Resour Res 49:6871–6892, 2013) for geophysical and groundwater models,
but is adjusted and applied here for a much more challenging problem of uncertainty
quantification of turbulence models. Through a numerical demonstration of the
Smagorinsky model of two-dimensional flow around a cylinder at sub-critical
Reynolds number, our approach is proven to significantly reduce the number of
costly LES executions without losing much accuracy in the posterior probability
estimation. Here, the model parameters are calibrated against synthetic data related
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to the mean flow velocity and Reynolds stresses at different locations in the flow
wake. The influence of the user-elected LES parameters on the quality of output
data will be discussed.

1 Introduction

For most turbulent flows encountered in industrial applications, the cost of direct
numerical simulation (DNS) would exceed the capacity of current computational
resource (and possibly continue to do so for the foreseeable future). As a re-
sult, many important decisions affecting our daily lives (such as climate policy,
biomedical device design, pollution dispersal and energy efficiency improvement)
are informed from simulations of turbulent flows by various models of turbulence.
The accuracy of estimated quantities of interest (QoIs) by such models, however,
frequently suffers from the uncertainties on the physical input data, user-chosen
model parameters and the subgrid model. It is ideal to be able to incorporate these
uncertainties in the predictions of QoIs.

The basic approach used for approximating turbulent flows has been to compute
the time- and space-filtered velocity and pressure, which are less computationally
demanding and of main technical interest, instead of solving for the pointwise ve-
locity and pressure prescribed by the standard Navier-Stokes equations. The use of
turbulence models leads to a level of uncertainty in the performance and inaccuracy
in the simulation results, due to user-chosenmodel parameters whose true or optimal
values are not well-known (parametric uncertainty), or the inherent inability of the
model to reproduce reality (structural uncertainty). With the fast growth in available
computational power, the literature on uncertainty quantification for fluid mechanics
modeling has grown extensively recently. Many stochastic numerical methods have
been developed, analyzed and tested for simulations of fluid flows with uncertain
physical and model parameters, see, e.g., [18, 20, 53, 57, 61, 62]. Sensitivity analysis
of LES to parametric uncertainty was conducted in [35]. Statistical methods to
capture structural uncertainties in turbulence models were presented in [17, 23, 24].
For inverse uncertainty quantification, we refer to [13, 45] (Bayesian inference for
Reynolds-averaged Navier Stokes (RANS) models) and [16] (adjoint based inverse
modeling).

Bayesian inference has become a valuable tool for estimation of parametric and
structural uncertainties of physical systems constrained by differential equations.
Sampling techniques, such as Markov chain Monte Carlo (MCMC), have frequently
been employed in Bayesian inference [19, 33, 50]. However, MCMC methods
[28, 59, 60] are, in general, computationally expensive, because a large number
of forward model simulations is needed to estimate the PPDF and sample from
it. Given the fact that one solution of turbulence models easily takes thousands
of computing hours, MCMC simulations in many CFD applications would require
prohibitively large computational budgets. Perhaps due to this demand, efforts on
model calibration up until now have been limited on the least expensive turbulence
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model ! RANS equations [13, 45]. To make Bayesian inference tractable for other
types of closure models, including LES, it is essential to perform the MCMC
sampling in a time and cost effective manner.

A strategy to improve the efficiency of MCMC simulations is surrogate mod-
eling, which has been developed in a wide variety of contexts and disciplines, see
[49] and the reference therein. Surrogate modeling practice seeks to approximate
the response of an original function (model outputs or the PPDF in this work),
which is typically computationally expensive, by a cheaper-to-run surrogate. The
PPDF can then be evaluated by sampling the surrogate directly without forward
model executions. Compared to conventional MCMC algorithms, this approach is
advantageous that it significantly reduces the number of forward model executions
at a desired accuracy and allows sampling the PPDF in parallel. Several methods
can be employed to construct the surrogate systems, including polynomial chaos
expansion [22], stochastic Galerkin [3], stochastic collocation [2], and polynomial
dimensional decomposition [48], to list a few. For problems where the quantities
of interest have irregular dependence with respect to the random parameters, such
as those studied herein, it should be noted that approximation approaches that
use global polynomials are generally less effective than those allowing for multi-
level, multi-scale decomposition. In this direction, one can develop multi-level
hierarchical subspaces and employ adaptive grid refinement to concentrate grid
points on the subdomains with a locally high variation of solutions, resulting in
a significant reduction in the number of grid points.

In this paper, we present an adaptive hierarchical sparse grid (AHSG) surrogate
modeling approach to Bayesian inference of turbulence models, in particularly
LES. The key idea is to place a grid in the parameter space with sparse parameter
samples, and the forward model is solved only for these samples. Compared to the
regular full grid approach, sparse grid preserves the high level of accuracy with
less computational work, see [4, 20, 26, 27, 42, 43]. As sparse grid methods require
the bounded mixed derivative property, which is open for the solutions of Navier-
Stokes equations and turbulence models in general, a locally adaptive refinement
method, guided by hierarchical surpluses, is employed to extend sparse grid ap-
proach to possible non-smooth solutions. This refinement strategy is different from
dimension-adaptive refinement [21], which puts more points in dimensions of higher
relevance and more in line with those in [25, 34, 46]. Although similar surrogate
methods has been studied in [36, 63] for geophysical and groundwater models, we
tackle here a more challenging problem of uncertainty quantification of turbulence
models. Indeed, turbulent flows are notorious for their extremely complex nature and
the non-smoothness of the surface of LES output data may weaken the accuracy of
the surrogate. The applicability of surrogate modeling techniques to LES therefore
needs thorough investigation. In this work, we will demonstrate the accuracy and
efficiency of the surrogate model through a numerical example of the classical
Smagorinsky closure model of turbulent flow around a circular cylinder at a sub-
critical Reynolds number (Re D 500), which is a benchmark test case for LES.
The computation will be conducted for the two-dimensional flow, whose outputs
have similar patterns as three-dimensional simulation, but which is significantly
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less demanding in computing budget. The synthetic data of velocity and Reynolds
stresses at different locations in the flow wake are utilized for the calibration.

This work is only one piece in the complete process of calibration and validation
of LES models to issue predictions of QoIs with quantified uncertainties, and
many open questions remain. We do not attempt to fit the numerical solutions
with physical data herein, as the two-dimensional model has been known to show
remarkable discrepancy with the experiment results. Applying our framework to
the three-dimensional simulation for parameter calibration against real-world data
would be the next logical step. Another important problem is to evaluate and
compare the performance of our AHSG with other surrogate methods (including
some listed above) in this process. This would be conducted in future research. Also,
characterization and quantification of the structural inadequacy and comparison of
different competing LES models are beyond the scope of this study.

The rest of the paper is organized as follows. The Bayesian framework and the
adaptive hierarchical sparse grid method of constructing the surrogate system are
described in Sect. 2. In Sect. 3, we give a detailed description of the Smagorinsky
model of sub-critical flow around a cylinder. The performance of surrogatemodeling
approach and results of the Bayesian analysis are presented in Sect. 3.4. Finally,
discussions and conclusions appear in Sect. 4.

2 Adaptive Hierarchical Sparse Grid Methods for Surrogate
Modeling in Bayesian Inference

2.1 Bayesian Inference

Consider the Bayesian inference problem for a turbulence model

d D f .!/C "; (1)

where d D .d1; : : : ; dNd/ is a vector of Nd reference data, ! D .!1; : : : ; !N! / is
a vector of N! model parameters, f .!/ is the forward model, e.g., Smagorinsky
model (see Sect. 3), with N! inputs and Nd outputs, and " is a vector of residuals,
including measurement, model parametric and structural errors. (Nonlinear model
d D „.f ;!; "/ can be considered as well, but leads to more complicated likelihood
functions, as " D „!1.f ;!/.d/).

The posterior distribution P.!jd/ of the model parameters ! , given the data d,
can be estimated using the Bayes’ theorem [10] via

P.!jd/ D L.! jd/P.!/R
L.!jd/P.!/d!

; (2)
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where P.!/ is the prior distribution and L.! jd/ is the likelihood function that
measure “goodness-of-fit” between model simulations and observations. In para-
metric uncertainty quantification, the denominator of the Bayes’ formula in Eq. (2)
is a normalization constant that does not affect the shape of the PPDF. As such,
in the hereafter discussion concerning building surrogate systems, the notation
P.!jd/ or the terminology PPDF will only refer to the product L.!jd/P.!/. The
prior distribution represents knowledge of the parameter values before the data d
is available. When prior information is lacking, a common practice is to assume
uniform distributions with parameter ranges large enough to contain all plausible
values of parameters.

Selection of appropriate likelihood functions for a specific turbulence simulation
is an open question. A commonly used formal likelihood function is based on the
simplistic assumption that the residual term " in (1) follows a multivariate Gaussian
distribution with mean zero and prescribed standard deviations, which leads to the
Gaussian likelihood function:

L.! jd/ D exp
!
!1
2
.d ! f .!//>†!1.d ! f .!//

"
: (MVN)

In this paper, we assume that the residual errors are independent, i.e., the covariance
matrix † is diagonal. To describe the correlation of the errors or the inadequacy
of turbulence models, other covariance matrices can also be used (and lead to
inconsistent results) [13, 45]. In general, the formal approach has been criticized
for relying heavily on residual error assumptions that do not hold. Alternatively,
informal likelihood functions are proposed as a pragmatic approach to implicitly
account for errors in measurements, model inputs and model structure and to avoid
over-fitting to reference data [8]. Definition of informal likelihood functions is
problem specific in nature, and there has been no consensus on which informal
likelihood functions outperforms others. For the sake of illustration, in Sect. 3.4, the
exponential informal likelihood function is used for the numerical example (together
with (MVN)). It reads:

L.!jd/ D exp

 
!" "

PNd
iD1

#
.di ! fi/ ! .d ! f /

$2
PNd

iD1
#
di ! d

$2

!
; (EXP)

where d is the mean of observations, f is the mean of the outputs of forward
model, and " is a scaling constant. For some other widely used informal likelihood
functions, see [55].
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2.2 Adaptive Hierarchical Sparse Grid Methods
for Construction of the Surrogate PPDF

The central task of Bayesian inference is to estimate the posterior distribution
P.!jd/. It is often difficult to draw samples from the PPDF directly, so the MCMC
methods, such as the Metropolis-Hastings (M-H) algorithm [19] and its variants,
are normally used for the sampling process. In practice, the convergence of MCMC
methods is often slow, leading to a large number of model simulations. To tackle this
challenge, surrogate modeling approaches seek to build an approximation (called
the surrogate system) for P.!jd/, then the MCMC algorithm draws samples from
it directly without executing the forward model. With this approach, the main
computational cost for evaluating the PPDF is now transferred to the surrogate
construction step. Naturally, an approximation method which requires minimal
number of grid points in the parameter space, while not surrendering much accuracy
is desired. The methodology we utilize to construct the surrogate system, presented
in this subsection, is similar to the method introduced in [63]. Since the method
can be applied to functions governed by partial differential equations, not limited to
P.!jd/ or f .!/, a generic notation #.!/ W $! R is used for the description. Recall
the following assumptions are generally needed for sparse grid methods:

(a) The domain $ is a rectangle, i.e., $ D $1 # : : : # $N! ; where $n $ R; n D
1; : : : ;N! :

(b) The joint probability density function %.!/ is of product-type:

%.!/ D
N!Y

nD1
%n.!n/;

where %n W $n ! R are univariate density functions.
(c) The univariate domains and density functions are identical:

$1 D : : : D $N! I %1 D : : : D %N! ;

yielding the same i-level univariate quadrature rules

Q .1/
i Œ"& D : : : D Q .N! /

i Œ"& DW Q iŒ"&:

(d) The univariate quadrature rules are nested.

In this setting, we can treat ! as a parametric variable and the probability density
function %.!/, consequently, as uniform. Assumptions (c) and (d) will be imposed
via our construction of quadrature points. It is possible that the plausible domain
for ! (corresponding to positive P.!jd/) is far from rectangle. In these cases, the
domain can be enclosed in a rectangle and as we shall see, the adaptive procedure
will generate the grid points only on the plausible regions, with the exception of the
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starting level. Isoprobabilistic transformations to map the function into a unit cube,
such as Rosenblatt transformation [52], can also be considered.

2.2.1 Adaptive Sparse Grid Interpolation

The basis of constructing the sparse grid approximation in the multi-dimensional
setting is the one-dimensional (1-D) hierarchical interpolation. Consider a function
#.!/ W Œ0; 1& ! R. The 1-D hierarchical Lagrange interpolation formula is
defined by

UK Œ#&.!/ WD
KX

iD0
'UiŒ#&.!/; (3)

where K is the resolution level, and the incremental interpolation operator'UiŒ#& is
given as

'UiŒ#&.!/ WD
miX

jD1
ci;j(i;j.!/; i D 0; : : : ;K: (4)

For j D 1; : : : ;mi, ( i
j.!/ and ci;j in (4) are the piecewise hierarchical basis functions

[12, 63] and the interpolation coefficients for'UiŒ#&, respectively. For i D 0; : : : ;K,
the integer mi in (4) is the number of interpolation points involved in 'UiŒ#&, which
is defined by

m0 D 1; m1 D 2; and mi D 2i!1 for i % 2:

A uniform grid, denoted by 'Xi D f!i;jgmi
jD1, can be utilized for the incremental

interpolant'UiŒ#&. The abscissas of 'Xi are defined by

!0;1 D 0:5; !1;1 D 0; !1;2 D 1; and !i;j D
2j ! 1

Pi
kD0mk ! 1

for j D 1 : : : ;mi; i % 2:

Then, the hierarchical grid for UK Œ#&.!/ is defined by XK D [K
iD0'Xi:

Based on the one-dimensional hierarchical interpolation, we can construct an
approximation for a multivariate function #.!/ W Œ0; 1&N! ! R, where ! D
.!1; : : : ; !N! /, by hierarchical interpolation formula as

IK Œ#&.!/ WD
X

jij"K
'iŒ#&.!/ (5)
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and the multi-dimensional incremental interpolation operator'iŒ#& is defined by

'iŒ#&.!/ WD 'Ui1 ˝ " " " ˝'UiN!
Œ#&.!/ D

X

j2Bi

ci;j"i;j.!/;

where i WD .i1; : : : ; iN! / is a multi-index indicating the resolution level of 'iŒ#&,
jij D i1C " " "C iN! , "i;j.!/ WD

QN!
nD1 (in ;jn.!n/, and the multi-index set Bi is defined

by Bi D
˚
j 2 NN!

ˇ̌
jn D 1; : : : ;min ; n D 1; : : : ;N!

%
. As such, the grids for'iŒ#& and

IK Œ#& are defined by 'Hi WD 'Xi1 # " " " #'XiN!
andHK WD [jij"K'Hi.

In this paper, we employ the piecewise linear hierarchical basis [12, 63] and the
surplus ci;j can be explicitly computed as

c0;1 D '0Œ#&.!0;1/ D I0Œ#&.!0;1/ D #.!0;1/;

ci;j D 'iŒ#&.! i;j/ D #.! i;j/ ! IK!1Œ#&.! i;j/ for jij D K > 0;

as the supports of basis functions are mutually disjoint on each subspace. As
discussed in [12], when the function #.!/ is smooth with respect to ! , the magnitude
of the surplus ci;j will approach to zero as the resolution levelK increases. Therefore,
the surplus can be used as an error indicator for the interpolant IK Œ#& in order to
detect the smoothness of the target function and guide the sparse grid refinement.
In particular, each point ! i;j of the isotropic level-K sparse gridHK is assigned two
children in each n-th direction, represented by

Cn
1.! i;j/ D

&
!i1;j1 ; : : : ; !in!1;jn!1 ; !inC1;2jn!1; !inC1;jnC1

; : : : ; !iN! ;jN!

'
;

Cn
2.! i;j/ D

&
!i1;j1 ; : : : ; !in!1;jn!1 ; !inC1;2jn ; !inC1;jnC1

; : : : ; !iN! ;jN!

'
;

(6)

for n D 1; : : : ;N! . Note that the children of each sparse grid point on level jij
belong to the sparse grid point set of level jij C 1. The basic idea of adaptivity is as
follows: for each point whose magnitude of the surplus is larger than the prescribed
error tolerance, we refine the grid by adding its children on the next level. More
rigorously, for an error tolerance ˛, the adaptive sparse grid interpolant is defined
on each successive interpolation level as

IK;˛ Œ#&.!/ WD
X

jij"K

X

j2B˛i
ci;j"i;j.!/; (7)

where the multi-index set B˛i is defined by modifying the multi-index set Bi, i.e.,
B˛i D fj 2 Bijjcijj > ˛g. The corresponding adaptive sparse grid is a sub-grid of the
level-K isotropic sparse gridHK , with the grid points becoming concentrated in the
non-smooth region. In the region where #.!/ is very smooth, this approach saves a
significant number of grid points but still achieves the prescribed accuracy.
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2.2.2 Algorithm for Constructing the Surrogate PPDF

In the forthcoming numerical illustration, a surrogate PPDF will be constructed
based on the sparse grid method, discussed above, with the use of the following
procedure.

Algorithm 2.1

• STEP 1: Determine the maximum allowable resolution K of the sparse grid by
analyzing the trade off between the interpolation error and computational cost.
Determine the error tolerance ˛.

• STEP 2: Generate the isotropic sparse grid at some starting coarse level `. Until
the maximum level K is reached or the magnitudes of all surpluses on the last
level are smaller than ˛, do the following iteratively:

– Step 2.1: Simulate the turbulence model f .!/ at each grid point ! i;j 2 H`.
– Step 2.2: Construct the sparse grid interpolant I`;˛ Œf &.!/ based on for-

mula (7).
– Step 2.3: Generate the adaptive sparse grid for the next level based on the

obtained surpluses. Set ` WD `C 1 and go back to Step 2.1.

• STEP 3: Construct an approximate likelihood function, denoted by QL.!jd/, by
substituting I`;˛ Œf & for f into the likelihood formula using, e.g., (MVN) or (EXP).

• STEP 4: Construct the surrogate PPDF QP.!jd/ via

QP.!jd/ / QL.!jd/P.!/:

After the surrogate is constructed, an MCMC simulation is used to explore
QP.!jd/. Using our approach, drawing the parameter samples does not require
any model executions but negligible computational time for polynomial evaluation
using the surrogate system. The improvement of computational efficiency by using
surrogate PPDF is more impressive when increased samples are drawn in the
MCMC simulation.

Finally, it is worth discussing the flexibility of grid adaptive refinement strategies.
It is known that in calibration problems of turbulence models, different likelihood
models could lead to conflicting posterior distributions [13, 45]. Moreover, for a flow
problem, experimental data given by different authors is sometimes inconsistent.
There is also a wide variation of the physical quantities to be measured and recorded.
Naturally, one would desire a surrogate modeling method that allows for the use of a
variety of likelihood functions and data sets, at little cost, once the surrogate system
has been built. An adaptive refinement strategy based on the smoothness of the
likelihood functions [63] is obviously the least flexible, since the grid is likelihood-
function-specific. The approach we apply in this work, i.e., an adaptive method that
is guided by the smoothness of output interpolant, allows the use of an universal
surrogate of the output, for different choices of likelihood functions and data of the
same physical quantities. The surrogate for the output is, however, more expensive
than that built directly for the likelihood function in the former approach, since
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grid points may be generated in the low density region of the likelihood where
the forward simulations are wasteful. The most versatile method is certainly the
non-adaptive, full sparse grid method, but the surrogate is also constructed with
highest cost in this case. To this end, one has to sacrifice the flexibility of the sparse
grid surrogate to improve the efficiency. The demand of investigating posterior
distribution over different likelihood functions and data sets and the computational
budget need to be balanced before an adaptive refinement strategy is determined.

3 Application to Large Eddy Simulation of Sub-critical Flow
Around a Circular Cylinder

3.1 Parametric Uncertainty of Smagorinsky Model

In LES practice, the time dependent, incompressible Navier-Stokes equations are
filtered by, e.g., box filter, Gaussian filter, differential filter and the governing
equations are given by

ut Cr " .u u/ ! )'uCrp ! r " .2)Trsu/ D f ;

r " u D 0;
(8)

where u is the velocity at the resolved scales, p is the corresponding pressure, )T % 0
is the eddy viscosity and rs is the symmetric part of r operator, see [7].

The most common choice for )T , which is studied herein, is known in LES as the
Smagorinsky model [41, 54] in which

)T D `2Sjrsuj; (9)

where `S D CSı and j " j D
p
2."/ij."/ij, `S is called the Smagorinsky lengthscale.

There are two model calibration parameters in this term – the Smagorinsky constant
CS and the filter width ı. The pioneering analysis of Lilly [32], under some
optimistic assumptions, proposed that CS has a universal value 0:17 and is not a
“tuning” constant. This universal value has been found later not the best choice for
most LES computations and various different values ranging from 0:1 to 0:25 are
usually selected leading to improved results, see, e.g., [1, 9, 14, 15, 37–40]. The
optimal choice for CS depends on the flow problems considered and even may be
different for different regions in a flow field. Indeed, this poses a major drawback of
the Smagorinsky model.

The second calibration parameter – the filter width ı-characterizes the short
lengthscale fluctuations to be removed from the flow fields. Ideally, the filter width
should be put at the smallest persistent, energetically significant scale (the flow
microscale), which demarcates the deterministic large eddies and isotropic small
eddies, [47]. Unfortunately, such a choice is infeasible, since the flow microscale is
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seldom estimated. Instead, due to the fact that LES requires the spatial resolution
h to be proportional to ı, the usual practice is to specify the grid to be used in
the computation, and then take the filter width according to the grid size. The
specification of grid and filter without knowledge of the microscale could lead to
poor simulation.

An additional calibration parameter involves in near wall treatment. The correct
behavior of Smagorinsky eddy viscosity )T near the wall is )T '0, since there is no
turbulent fluctuation there. In contrast, the formulation (9) is nonzero and introduces
large amounts of dissipation in the boundary layer. One approach to overcome this
deficiency is to damp `S as the boundary is approached by the van Driest damping
function [58]. The van Driest scaling reads:

`S D CSı
&
1 ! e!y

Cn
=ACn'p

; (10)

where yC is the distance from wall in wall units, AC is van Driest constant ascribed
the value AC D 25. Various different values of .n; p/ have been used – the most
commonly chosen are .1; 1/ and .3; 0:5/, [51]. For simplicity, in this work, we fix
n D 1 and treat p only as a calibration parameter. The variation of p alone can
capture the full spectrum of near wall scaling: p D 0 means no damping function is
applied, while a large p associates with fast damping. We call p van Driest damping
parameter.

3.2 Sub-critical Flow Around a Circular Cylinder

The flow concerned in this study corresponds to a time-dependent flow through
a channel around a cylinder. External flows past objects have been the subject of
numerous theoretical, experimental and numerical investigations because of their
many practical applications, see [5, 6, 44] and the reference therein. In the sub-
critical Reynolds number range (300 < Re < 2#105), these flows are characterized
by turbulent vortex streets and transitioning free shear layers.

We consider the two-dimensional flow around a cylinder of diameter D D 0:1 in
rectangular domain of size 2:2 # 1:4, consisting a 5D upstream, 17D downstream
and 7D in lateral directions. We employ the finite element method with second
order Taylor-Hood finite element and polygonal boundary approximation. Our
computation is carried out on triangular meshes generated based on Delaunay-
Voronoi algorithm and refined around the cylinder. The ratio of number of mesh
points on the top/bottom boundaries, left/right boundaries and cylinder boundary is
fixed at 3:2:4 (Fig. 1). As common practice, the filter width is chosen locally at each
triangle as the size of the current triangle. Its value therefore varies throughout the
domain, and is roughly 10 times smaller near the cylinder than that in the far field.
Since the synthetic data will be taken in the near wake region, for simplicity, we
characterize ı by the value of the filter width on the cylinder surface.
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Fig. 1 A computational grid used in our study on LES of turbulent flow past a cylinder with
ı D *=480

The Smagorinsky model with van Driest damping (8), (9) and (10) is considered
with ) D 2 # 10!4, f D 0, T D 12 and 't D 0:01. The statistics are compiled
over the last 7 time units, equivalent to a period of &15 vortex shedding cycles. The
inflow and outflow velocity is . 6

1:42
y.1:4 ! y/; 0/. The mean velocity at the inlet is

U0 D 1. No-slip boundary conditions are prescribed along the top and bottom walls.
Based on U0 and the diameter of the cylinder D, the Reynolds number for this flow
is Re D 500, in the sub-critical range. The temporal discretization applied in the
computation is the Crank-Nicolson scheme. Denoting quantities at time level tk by
a subscript k, the time stepping scheme has the form:

uk ! uk!1
't

! )'
uk C uk!1

2
C 1

2
.uk " ruk C uk!1 " ruk!1/Crpk

! .r " .)T.uk/rsuk/Cr " .)T.uk!1/rsuk!1// D 0;

r " uk D 0:

(11)

System (11) is reformulated as a nonlinear variational problem in time step tk. This
problem is solved iteratively by a fixed point iteration. Let .u0k ; p

0
k/ be an initial

guess. Given .umk ; p
m
k /, the iterate .u

mC1
k ; pmC1k / is computed by solving

umC1k ! uk!1
't

! )'
umC1k C uk!1

2
C 1

2
.umk " rumC1k C uk!1 " ruk!1/CrpmC1k

! .r " .)T.umk /rsumC1k /Cr " .)T.uk!1/rsuk!1// D 0;

r " umC1k D 0:

(12)



A Sparse Grid Method for Bayesian Inference of LES Turbulence Models 303

The fixed point iteration in each time step is stopped if the Euclidean norm of
the residual vector is less than 10!10. The spatial and temporal discretizations we
use herein are similar to [30, 31], in which they were applied to direct numerical
simulations of flow around a cylinder at Reynolds number Re D 100.

3.3 The Prior PDF and Calibration Data

We will exploit Bayesian calibration for three model parameters CS, p and ı.
The uniform prior PDF of the uncertain parameters is assumed. The searching
domains for CS and p are Œ0; 0:2& and Œ0; 2& respectively, covering their plausible
and commonly selected values. The range of the prior PDF of ı, on the other
hand, would significantly affect the computational cost; since the filter width is
proportional to the spatial resolution. Thus, to reduce the cost of flow simulations,
the searching domain for ı is set to be Œ*=600;*=200&, corresponding to relatively
coarse resolutions where the grid spacing on the cylinder surface ranges from & 2 to
6 wall units. As we shall see, the response surfaces tend to be more complicated for
the low-resolution simulation, possibly due to the non-physical oscillations in the
underresolved solutions reflecting in the probability space. As a result, coarse grids
pose a greater challenge for the surrogates to precisely describe the true outputs
and are suitable for our purpose of verifying the accuracy of the surrogate modeling
approach. Figure 2 shows the distribution of instantaneous vorticity at t D 20 in the
near wake region for two different choices of turbulence parameters.We can see that
the simulated flows display laminar vortex shedding, as expected for LES of flows
past bluff bodies. The difference in phase of vortex shedding in two simulations is
recognizable.

The synthetic data are generated by solving Smagorinsky model (8), (9) and (10)
with CS D 0:15; p D 0:05 and ı D *=480. The data sets used for calibration
process are taken at 11 stations in a distance of & 1D downstream. Specifically,
these points locate equidistantly on the vertical line x D 0:65 between y D 0:6 and
y D 0:8. For each point, the data of average streamwise and vertical velocities,

Fig. 2 Intantaneous vorticity at t D 20 generated by two different choices of model parameters.
Left: Cs D 0:2; p D 0; ı D *=480. Right: Cs D 0:05; p D 0; ı D *=720
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Table 1 The true parameter
values and the initial
searching regions for model
calibration

True value +

Smagorinsky constant CS 0:15 Œ0; 0:2&

van Driest parameter p 0:5 Œ0; 2&

Filter width ı *=480 Œ*=600;*=200&

Fig. 3 Total resolved Reynolds stresses and average velocities along the vertical line at 1D
downstream for some Smagorinsky models

denoted by U and V , as well as total streamwise, vertical and shear Reynolds
stresses, i.e., hu0u0i, hv0v0i and hu0v0i, are selected, giving a total of 55 reference
data. For clarity, the bounds of uniform prior PDFs and the true values of calibration
parameters are listed in Table 1. In Fig. 3, the measurements of interested velocities
and Reynolds stresses along x D 0:65 are plotted for some typical simulations.
We observe that except for ı D *=200, the approximated quantities are quite
smooth and have expected patterns, see [5]. Certainly, the plots show significant
differences among different models. In practice, LES models which give distinctly
poor results such as those at ı D *=200 could be immediately ruled out from the
calibration process, informed by the fact that the wall-adjacent grid points lie outside
the viscous sublayer. However, it is useful here to examine the response surfaces and
the accuracy of the surrogate systems in these cases, and we choose to include these
large filter widths in the surrogate domain instead.

Finally, it is worth mentioning that Smagorinsky model coefficients are not the
only parameters that influence the quality of LES solutions. Indeed, other numerical
parameters such as time step size and averaging time also have significant impacts,
see, e.g., [11, 51]. While an estimation of their influence is not conducted here, we
need to ensure that the errors caused by them do not dominate the uncertainties
in the calibration parameters. A simple validation test is carried out on the flow
statistics generated by Smagorinsky model of CS D 0; p D 0 and ı D *=480. The
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Table 2 The maximum change in average velocity and Reynold stress profiles under the modifi-
cations of time step, averaging period and outflow BC

Component modified U V hu0u0i hv0v0i hu0v0i
Time step 0.0148 0.0213 0.0202 0.0371 0.0186
Averaging period 0.0048 0.0025 0.0014 0.0011 0.0045
Outflow BC 0.0022 0.0029 0.0016 0.0061 0.0020

flow simulation is replicated first with the temporal resolution refined by a factor
of two, i.e., 't D 0:005, and then with a doubled averaging period, i.e., by setting
T D 19. We also conduct another simulation in which the zero gradient replaces
Dirichlet outflow boundary condition to justify that the numerical oscillation at the
downstream boundary does not disturb the inner domain. The maximum change
in five velocity and Reynold stress profiles of interest in these modified models is
presented in Table 2. We see that among three investigated source of numerical
errors, the temporal resolution is the most prominent, as it makes up approximately
80% of the change in all data. More importantly, Table 2 reveals that the total
maximum change is approximately 0:05 in the vertical Reynolds stress data and
0:025 for other quantities. Numerical errors of the synthetic calibration data, as well
as model outputs, are expected to be around these values. In the uncertainty analysis
following, for the (MVN) likelihood model, we will assume that the reference data
are corrupted with Gaussian random noise of 0:1.

3.4 Results and Discussions

This section justifies the accuracy and efficiency of the surrogate modeling method
described in Sect. 2, when applied to the numerical example of two-dimensional
flow around a cylinder specified in Sect. 3. We utilize the software package
FreeFem++ [29] in solving the Smagorinsky discretization scheme. The adaptive
sparse grid interpolation and integration schemes are generated using functions in
the TASMANIAN toolkit [56]. The DRAM algorithm [28] is chosen for MCMC
sampling of the surrogate PPDF.

The surrogate system for outputs is constructed using the linear basis functions,
first on the standard sparse grid of level 5, then the grids are refined adaptively up to
level 8. The total numbers of model executions needed for the four interpolants are
177; 439; 1002 and 2190, respectively, which are also the number of points of the
four corresponding adaptive sparse grids.

The accuracy of a surrogate modeling approach based on the AHSG method is
largely determined by the smoothness of the surrogate system, so it is worth exam-
ining the surface of the output data in the parameter space. For brevity, we only plot
here the vertical Reynolds stress data at the centerline, i.e., hv0v0i.0:65; 0:7/, which
is among the most fluctuating (See Fig. 3). Figure 4 represents some surfaces for
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Fig. 4 Surfaces of the predicted vertical Reynolds stress data at .0:65; 0:7/ generated by the
AHSG method at level 8. CS and p are normalized such that their searching regions are Œ!1; 1&

typical values of filter width generated on level 8 grid. We observe that the surface
according to ı D *=200 differs from two other cases (ı D *=600; ı D *=300) that
are remarkably rougher. This, together with Fig. 3, confirms the connection between
the complexity of the output function in both the physical and parameter spaces. In
Fig. 5, the scatter plots for the predicted outputs obtained with the surrogate system
at level 7 are presented. The approximations show clear improvement in accuracy
with ı 2 Œ*=600;*=300&, compared to those at larger values. While not considered
herein, it is reasonable to expect that the surrogate outputs at least maintain the same
accuracy for ı ' *=600, since more grid refinement will remove extra non-physical
wiggles. In the next part, we justify that this level of accuracy is sufficient for our
surrogate-based MCMC method. Although the surrogate systems show remarkable
discrepancy for large ı, as previously mentioned, these values, leading to visibly
inadequate outputs, should be excluded in practical calibration processes. While the
original domain of ı is Œ*=600;*=200&, by choosing its true value as *=480, the
effective searching region of ı is restricted to Œ*=600;*=300&.

To evaluate the accuracy and efficiency of our surrogate modeling approach, the
DRAM-based MCMC simulations using the surrogate PPDF QP.! jd/ constructed
in Algorithm 2.1 are conducted. Each MCMC simulation draws 60,000 parameter
samples, the first 10,000 of which are discarded and the remaining 50,000 samples
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Fig. 5 Scatter plots for the prediction of the output data given by the surrogate system on level 7
sparse grid
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Fig. 6 Marginal posterior probability density functions of three Smagorinsky model parameters
with (MVN) likelihood model estimated using the linear surrogate systems on level 5–8 adaptive
sparse grids

are used for estimating the PPDF. For the first experiment, (MVN) likelihood
function is employed; the data are corrupted by 10%Gaussian random noise, treated
as numerical errors. Figure 6 plots the marginal PPDFs where the three parameters
are normalized such that the searching region is Œ!1; 1&3. The black vertical lines
represent the true values listed in Table 1. The red solid lines are the marginal PPDFs
estimated byMCMC simulations based on the surrogate systems on level 8 grid, and
the dashed lines represent those based on the surrogate systems on lower levels. The
figure indicates that the MCMC results according to level 7 and level 8 sparse grids,
which require 1002 and 2190 model executions correspondingly, are already close
to each other. Thus, the surrogate PPDF on level 8 is accurate enough for MCMC
simulations.

We proceed to compare the accuracy of the surrogate-basedwith the conventional
MCMC with equal computational effort, i.e., same number of model executions.
Due to the high computational cost, a proper conventional MCMC simulation is not
conducted in this work. However, given the accuracy of the surrogate system, we
expect that marginal PPDFs obtained from conventionalMCMC are very close with
those from surrogate-basedMCMC on high-level grid and therefore, run theMCMC
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Fig. 7 Marginal posterior probability density functions of model parameters with (MVN) likeli-
hood function estimated using the linear surrogate systems on level 8 adaptive sparse grids with
1002, 2190 and 50,000 samples (excluding 10,000 samples for burn-in period). These are the
numbers of model executions that the conventional MCMC requires to obtain similar results
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Fig. 8 Marginal posterior probability density functions of three Smagorinsky model parameters
with (EXP) likelihood model estimated using the linear surrogate systems on level 5–8 adaptive
sparse grids

simulation with samples drawn from level 8 surrogate. The first 10,000 samples
are discarded to minimize the effect of initial values on the posterior inference.
Figure 7 depicts the marginal PPDFs for model parameters obtained with 1002,
2190 and 50,000 samples after burn-in period. Let us remark that if conventional
MCMC is employed, these are the numbers of model executions required to obtain
similar results. Comparing Figs. 6 and 7 indicates that with the same number of
model executions, the approximations using surrogate system are more accurate
than those using conventional MCMC, highlighting the efficiency of our surrogate
modeling method.

In order to demonstrate that our adaptive refinement strategy based on the
smoothness of output data in probability space allows the change of likelihood
models with minimal computational cost, we perform the above experiment with
(EXP) likelihood function and , D 500 using the same surrogate of outputs. The
marginal PPDFs of model parameters estimated using the linear surrogate systems
are shown in Fig. 8. Again, they can be compared with marginal PPDFs estimated
using conventional MCMC with the same number of model executions in Fig. 9.
The plots confirm the accuracy of the surrogate PPDF for MCMC simulations
and that surrogate-based MCMC requires less forward model executions than the
conventional approach. On the other hand, it should be noted that some likelihood
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Fig. 9 Marginal posterior probability density functions of model parameters with (EXP) likeli-
hood function estimated using the linear surrogate systems on level 8 adaptive sparse grids with
1002, 2190 and 50,000 samples (excluding 10,000 samples for burn-in period). These are the
numbers of model executions that the conventional MCMC requires to obtain similar results
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Fig. 10 Two-dimensional marginal posterior probability density function of CS and pwith (MVN)
likelihood model. The MCMC samples are obtained using the linear surrogate system on level 8
sparse grid

models, especially those resulting in peaky PPDFs, may require a surrogate system
more accurate than that on level 8 sparse grid. In those cases, the surrogate needs to
be constructed on a grid of higher level.

The calibration results for both likelihood models show that the Smagorinsky
constant CS and van Driest damping parameter p have posterior maximizers near
their true values, while smaller values are somewhat preferred for the filter width ı.
Meanwhile, the posterior distribution of ı is peaky, indicating that the data depend
on ı and the Smagorinsky models with our selections of filter width (and spatial
resolution) are incomplete. Indeed, finer grids are needed to sufficiently resolve
the energy. The plots also reveal that the data are significantly more sensitive with
respect to ı than to other parameters. This elucidates why finding the optimal value
for ı, i.e., determining the ideal place to truncate scale, is a very important issue in
LES practice. Finally, the positive correlation between CS and p can be observed in
Fig. 10, in which the posterior samples projected on the .CS; p/-plane are plotted.
Given that our calibration data are extracted in near wake region, this correlation is
expected. As larger value of CS increases the Smagorinsky lengthscale `S, larger p
would be needed for a stronger damping of `S near the boundary.
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4 Conclusion and Future Works

In this paper, we present a surrogate modeling approach based on the AHSG method
for Bayesian inference, with application to quantification of parametric uncertainty
of LES turbulence models. The method is based on those developed in [62] for
less complex geophysical and groundwater models, is model independent and can
be flexibly used together with any MCMC algorithm and likelihood function. The
accuracy and efficiency of our approach is illustrated by virtue of the numerical
example consisting of the Smagorinsky model of two-dimensional flow around a
cylinder. We combine the hierarchical linear basis and the local adaptive sparse
grid technique to construct surrogate systems with a small number of model
executions. Although the forward model investigated herein is highly nonlinear
and more complicated than those in previous studies, our analysis indicates that
the surrogate system is accurate for reasonable specifications of search regions.
Compared to the conventional MCMC simulation, our surrogate-based approach
requires significantly less model executions for estimating the parameter distribution
and quantifying predictive uncertainty. Given the extremely high cost of turbulence
simulations, this computational efficiency is critical for the feasibility of Bayesian
inference in turbulence modeling.

While the performance of surrogate modeling method is evaluated in this
work for a synthetic cylinder flow model on relatively coarse grids, we expect
comparable results for practical, more complicated calibration and prediction
problems using real-world data; since three-dimensional, more refined simulations
and real experiments of these flows are known to produce similar patterns to the
investigated physical outputs in this study. Still, a three-dimensional demonstration
of our surrogate-based approach for these problems is irreplaceable and would be
the next logical step. The framework presented here could be directly applied to
other engineering flow models, as well as to the tasks of quantifying the structural
uncertainties and comparing competing turbulence closure models. The accuracy of
surrogate-basedMCMC in these cases needs to be tested, but the verification, which
is much less computational demanding than running the conventional MCMC, is
possibly worthwhile. Finally, besides our AHSG, several other methods can be
employed to construct the surrogate system. A thorough comparative assessment
with those methods is essential to fully justify the efficiency of our approach in
turbulence uncertainty quantification problems and would be considered in the
future.

Concerning sparse grid interpolationmethods, additional research in accelerating
the convergence rate of the surrogate is necessary. One direction is high-order sparse
grid methods, which utilize high-order (instead of linear) hierarchical polynomial
basis and whose superior efficiency has been justified for uncertainty quantification
of groundwater models [63]. On the other hand, given that the outputs and PPDFs
do not experience same level of sensitivity to different calibration parameters,
combining locally grid refinement strategy with dimension-adaptive sparse grid
methods to further reduce the number of interpolation points is worth studying.
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